Abstract

With the increase in studies on high-entropy alloys and their impressive structural properties, the preparation processes and applications of high-entropy alloys have become a popular research topic in metallic materials. In this paper, the preparation of FeCrNiCoMnSi0.1 high-entropy alloy coatings was carried out by the follow-welding high-frequency power ultrasonic impact composite TIG arc melting process, the effects of different power ultrasonic impacts on the microstructure and properties of the coatings are investigated. The results showed that the average grain size is reduced by 74 % (from 278 μm to 72 μm), the average microhardness is increased by 41 % from 568 HV1 to 807 HV1, the abrasion resistance is improved by 68 % under the effect of ultrasonic impact. The ultrasonic impact treatment process can effectively refine the microstructure of the coatings and improve the strength of grain boundaries. The corrosion resistance of the coating in 3.5 wt% NaCl solution is enhanced by 65 %, the corrosion type was changed from intergranular corrosion to uniform corrosion. This is mainly caused by the ultrasonic impact treatment which suppresses the elemental segregation of Cr and Mn and improves the grain boundary strength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call