Abstract

The CoHoxFe2-xO4 (x = 0.00, 0.05, 0.1, 0.15, 0.2) samples were synthesized by chemical co-precipitation technique. The structural properties were studied using X-ray diffraction (XRD). XRD data reveal formation of single cubic spinel phase for the samples having lower concentration of holmium substitution namely x = 0.0, 0.05 and 0.10, However, at higher concentrations, x = 0.15 and 0.2 few extra diffraction lines belonging to HoFeO3 were observed indicating solubility limit of holmium in the CoFe2O4 lattice. Williamson – Hall plot was used to determine strain in the samples. Microstructural studies carried out using Scanning Electron Microscopy (SEM) depict significant changes in microstructure with increase in holmium concentration. Microstructure of un-substituted cobalt ferrite sample was found to be very compact and grain growth was further found to be restricted with increase in holmium concentration. DC magnetization recorded using Vibrating Sample Magnetometer (VSM) at room temperature indicates decrease in saturation magnetization with increase in Holmium concentration, which is correlated with the weakening of A-B exchange interactions. Comparatively high values of coercivity and retentivity are obtained for holmium concentration with x = 0.15. Magnetostriction measurements were carried out for two different orientations of strain gauge fixed on plane surface of sample with parallel and perpendicular orientation with respect to direction of external magnetic field. For un-substituted cobalt ferrite sample, maximum value of magnetostriction was found to be −228 ppm at 3.5 kG magnetic field. This suggests its application in actuator. Further, effect of holmium substitution on magnetic and magnetostrictive properties has been analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.