Abstract

In this work, a low temperature (∼600 °C) solution combustion technique is employed for the synthesis of Ni0.5Co0.5BixFe2-xO4 (NCBFO, where x = 0.0, 0.05, 0.1, 0.15, & 0.2) nanoparticles with crystallite size variation of 17–22 nm. The X-ray diffraction (XRD) technique is used to confirm the formation of cubic spinel phase of Bi3+ doped (for x ≤ 0.05 samples) nickel–cobalt ferrite (NCFO) nanoparticles. The increase in bismuth substitution (x > 0.05) results in the formation of the Bi2O3 along with the NCFO structure, which results in the reduction of binding energy and is confirmed by the XRD and X-ray photoelectron spectroscopy (XPS) techniques. From the Raman spectra, the change in the intensities of the peaks is observed due to the variation of Bi3+ in NCFO matrix. Due to increasing cation concentration and electronegativity, the FTIR absorption band shifts toward the lower wave numbers. Dielectric measurements were carried out to examine the charge transport behavior and electric conduction mechanism. The FESEM images shows the non-magnetic bismuth atoms are diffused into the NCFO nanoparticles. From the vibrating sample magnetometer (VSM) analysis, it is observed that saturation magnetization, remanent magnetization, coercivity and squareness ratio are found to be maximum for x = 0.15 NCBFO sample. The high coercivity (Hc = 916.8 Oe) for the x = 0.15 sample indicates the hard ferromagnetic behaviour of the samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call