Abstract

High entropy alloy (HEA) coatings of equimolar AlCoCrFeNi typically exhibit a lower oxidation rate at high temperatures by forming a protective passivation film. However, the metal elements consumption during long-term oxidation limitted the application. In this work, AlCoCrFeNi HEA coatings doped by AlSi as a supplement to passivation elements were prepared by atmospheric plasma spraying (APS), and AlSi capsules were diffused uniformly into the coating through annealing treatment to offset the element consumption during high-temperature oxidation. Results showed that annealing promoted Al and Si atoms diffusing into the solid solution, which stabilized BCC and inhibited FCC formation. During the oxidation at 900 °C, a protective Al2O3 film was formed on the coating surface, and AlSi capsules continuously transported Al ions to the consumption zone and reduced oxidation rate to 0.0015 g/cm2. The HEA coating doped by passivation element capsules provided a new approach for the design of novel antioxidant coatings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.