Abstract
Abstract This paper reports the microstructure evolution of Cu50.2 Zr40.8Ti9−xNbx (x = 0.5, 1.0, and 2.0 at.%) bulk metallic glass and bulk metallic glass composites accompanied with the addition of Nb and the corresponding mechanical properties. The X-ray diffraction and characterization of microstructures demonstrate that the microstructures of as-cast alloys undergo a composite-amorphous evolution. DSC analysis indicates that the glass-forming ability of as-cast alloys increases with addition of Nb. The microstructure evolution can be contributed to the combination of the stabilization of Nb on precipitated crystalline phases and cooling time. 1.0 at.% Nb-alloyed sample has the best plasticity (15.1%) and the highest fracture strength (2205 MPa) among three as-cast alloys. This work suggests that the uniformly dispersed tiny crystalline phases in glassy matrix can enhance the plasticity of bulk metallic glasses.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have