Abstract

In this paper, an equal channel angular pressing method is employed to refine grains and enhance mechanical properties of a new β Ti–35Nb–3Zr–2Ta biomedical alloy. After the 4th pass, the ultrafine equiaxed grains of approximately 300nm and 600nm are obtained at pressing temperatures of 500 and 600°C respectively. The SEM images of billets pressed at 500°C reveal the evolution of shear bands and finally at the 4th pass intersectant networks of shear bands, involving initial band propagation and new band broadening, are formed with the purpose of accommodating large plastic strain. Furthermore, a unique herringbone microstructure of twinned martensitic variants is observed in TEM images. The results of microhardness measurements and uniaxial tensile tests show a significant improvement in microhardness and tensile strength from 534MPa to 765MPa, while keeping a good level of ductility (~16%) and low elastic modulus (~59GPa). The maximum superelastic strain of 1.4% and maximum recovered strain of 2.7% are obtained in the billets pressed at 500°C via the 4th pass, which exhibits an excellent superelastic behavior. Meanwhile, the effects of different accumulative deformations and pressing temperatures on superelasticity of the ECAP-processed alloys are investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.