Abstract

Multi-principal element alloy coatings (MPEACs) have great application potential for high-temperature diffusion barrier coatings. The sluggish diffusion and lattice distortion of this new coating material due to its own atomic size effect give the coating excellent resistance to high temperature oxidation and grain coarsening. In this study, the high-temperature oxidation properties, and microstructure evolution of quaternary, quinary, senary, and denary alloy coatings (whose lattice distortion magnitude is linearly increased) at 1100 °C were studied. The evolution of grain orientation, size, and grain boundaries of alloy coatings after high temperature exposure were analyzed by EBSD. The results showed that from quaternary to denary alloy coatings, with the rise in lattice distortion magnitude of the alloy system, the sluggish diffusion ability of the coating at high temperatures was more obvious. Specifically, the oxidative activation energy of quaternary to denary alloy coatings is 355.41, 480.96, 478.76, and 654.03 kJ/mol, respectively. A high distortion magnitude is beneficial to increase the activation energy of the alloy coating, as a result, grain growth of alloy coatings with high activation energy is significantly inhibited, and under the combined action of storage strain energy and solute dragging, the grain boundary migration rate of the coatings also declines. Finally, the denary alloy coating shows good resistance to high temperature softening. This study provides a positive reference for promoting the application of multi-principal alloys in diffusion barrier coatings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call