Abstract

Bi 1 − x Ce x FeO 3 (x=0, 0.05, 0.1, 0.15, and 0.20) (BCFO) thin films were deposited on Pt/TiN/Si3N4/Si and fluorine-doped SnO2 glass substrates by sol-gel technique, respectively. The effect of Ce doping on the microstructure, electrical and magnetic properties of BCFO films was studied. Compared to counterparts of BiFeO3 (BFO) film, the fitted Bi 4f7/2, Bi 4f5/2, Fe 2p3/2, Fe 2p1/2, and O 1s peaks for Bi0.8Ce0.2FeO3 film shift toward higher binding energy regions by amounts of 0.33, 0.29, 0.43, 0.58, and 0.49 eV, respectively. Raman redshifts of 2–4 cm−1 and shorter phonon lifetimes for the Bi0.8Ce0.2FeO3 film might be related to anharmonic interactions among Bi–O, Ce–O, (Bi, Ce)–O, and Fe–O bonds in the distorted oxygen octahedron. Compared to the pure counterparts, the dielectric and ferroelectric properties of the Bi0.8Ce0.2FeO3 film are improved due to the decreased oxygen vacancies by the stabilized oxygen octahedron. Current density values for the BFO and Bi0.8Ce0.2FeO3 film capacitors are 9.89×10−4 and 5.86×10−5 A/cm2 at 10 V, respectively. The current density–applied voltage characteristics indicate that the main conduction mechanism for the BCFO capacitors is the interface-controlled Schottky emission. Both the in-plane and out-of-plane magnetization–magnetic field hysteresis loops reveal that the saturation magnetization values of the BCFO films increase with increasing the Ce concentration. The enhanced magnetic properties for the BCFO films might be attributed to the presence of Fe2+ caused by oxygen vacancies, the suppressed spiral spin structure, and/or the increased canting angle induced by Ce doping.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.