Abstract

Bi1−x Ce x FeO3 (x = 0, 0.05, 0.1, 0.15 and 0.20) (BCFO) thin films were deposited on Pt/TiN/Si3N4/Si substrates by sol–gel technique. Crystal structures, surface chemical compositions and bonding states of BCFO films were investigated by X-ray diffraction and X-ray photoelectron spectroscopy (XPS), respectively. Compared to BiFeO3 (BFO) counterparts, the fitted XPS narrow-scan spectra of Bi 4f7/2, Bi 4f5/2, Fe 2p3/2, Fe 2p1/2 and O 1s peaks for Bi0.8Ce0.2FeO3 film shift towards higher binding energy regions by amounts of 0.33, 0.29, 0.43, 0.58 and 0.49 eV, respectively. Dielectric constants and loss tangents of the BCFO (x = 0, 0.1 and 0.2) film capacitors are 159, 131, 116, 0.048, 0.041 and 0.035 at 1 MHz, respectively. Bi0.8Ce0.2FeO3 film has a higher remnant polarization (P r = 2.04 μC/cm2) than that of the BFO (P r = 1.08 μC/cm2) at 388 kV/cm. Leakage current density of the Bi0.8Ce0.2FeO3 capacitor is 1.47 × 10−4 A/cm2 at 388 kV/cm, which is about two orders of magnitude lower than that of the BFO counterpart. Furthermore, Ce cations are feasibly substituted for Bi3+ in the Bi0.8Ce0.2FeO3 matrix, possibly resulting in the enhanced ferroelectric properties for the decreased grain sizes and the reduced oxygen vacancies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.