Abstract

A hardenable lightweight Mg-22wt%Gd alloy with ultra fine grained (UFG) structure was prepared by high pressure torsion (HPT) at ambient temperature. The development of microstructure during HPT processing was investigated. A homogeneous UFG structure with grain size of 300nm was achieved after 15 HPT revolutions. The UFG alloy exhibits enhanced strength due to work strengthening by tangled dislocations forming a dense forest throughout grains. Dislocation density in the sample was determined by positron annihilation spectroscopy (PAS) and X-ray line profile analysis (XLPA). It was found that there is an additional source of X-ray profile broadening in addition to small crystallites and micro-strains caused by dislocations. The additional micro-strain component was attributed to lattice modulation by Gd-rich nano-wires formed by agglomeration of Gd solutes and to strains arising from boundaries of crystallite domains and inter-domain interactions. Analysis of the influence of the crystallite size on the strength of UFG Mg-22wt%Gd alloy revealed a breakdown in the Hall-Petch relationship when the crystallite size decreased below a critical value of ≈30nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call