Abstract

The interplay of various hardening and softening processes during explosive welding and post-processing annealing have been analysed in titanium/copper bimetallic sheets using scanning electron microscopy and microhardness measurements. Severe plastic deformation and intermetallics’ formation are typical processes leading to hardening, whereas dynamic/static recrystallization and the transformation of amorphous phases into crystalline ones lead to softening. In the as-welded state the interfacial layers of both parent sheets are severely deformed. However, they can undergo intense recrystalization in areas near large melted zones. Inside the melted zones a wide variety of chemical compositions can be detected, however, most of the phases do not appear in the Ti-Cu equilibrium phase diagram. The post-processing annealing at 973 K for 1 h leads to full recrystallization of severely deformed layers of parent sheets and transforms the non-equilibrium phases forming melted zone into the equilibrium TiCu4 and Ti3Cu4 ones via spinodal decomposition. Simultaneously, the growth of four intermetallic layers: Ti2Cu, TiCu, Ti3Cu4, TiCu4 situated along the whole interface was detected.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call