Abstract

Nanostructured NiAl and Ni–Al–N thin films were RF magnetron sputtered from a NiAl compound target in different argon–nitrogen atmospheres. The structure and stoichiometry of as-deposited coatings were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Differential thermal analysis (DTA) was also conducted to study the oxidation kinetics of the films at high temperatures. Microstructural and compositional changes of the coatings after isothermal oxidation were investigated using XRD, SEM, and Rutherford backscattering spectrometry (RBS). The results show that: (1) denser and more completely crystallized Ni–Al–N thin films can be tailored through controlled ion bombardment during deposition, (2) nano-composite NiAl–AlN thin films were synthesized with nitrogen atomic concentrations up to 30%, and (3) the NiAl and Ni–Al–N coatings exhibited good oxidation resistance even at temperatures above 1273 K. The addition of AlN to NiAl resulted in decreased activation energies for oxidation. The oxidation study also revealed different rate controlling mechanisms for NiAl and Ni–Al–N (21.4 at.% N) films isothermally oxidized in air at 1273 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.