Abstract

AlN thin films with c-axis orientation have been investigated for fabricating thin film bulk acoustic wave resonators in the past few years. Characterization of thin film material properties including density, elastic modulus, and piezoelectric coefficient is essential in processing study and for predicting the performance of the acoustic devices. In this paper, we present our results on the fabrication of highly c-axis oriented AlN thin films on Pt∕Ti∕Si (100) substrates by dc reactive magnetron sputtering method. The crystalline structure and the surface morphology of AlN films are characterized by x-ray diffraction and scanning electron microscopy. The effective piezoelectric coefficient d33eff of the AlN films was measured by a laser interferometer method and the piezoelectric coefficient d33 was estimated. A recently developed resonance spectrum method is applied to characterize the electromechanical properties of AlN thin films based on the input electrical impedance equation derived by one-dimensional transmission line theory for composite resonators. Using the experimental impedance spectrum data, the density and elastic constant of the piezoelectric AlN thin film in the four-layer composite resonator structure are evaluated. The calculated results reveal that the piezoelectric coefficient d33, density, and velocity of the c-axis oriented AlN thin film are 4.19pm∕V, 3187.3kg∕m3, and 10631m∕s, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.