Abstract

The aim of this study was to compare composition, microstructure, and mechanical strength of current multilayer zirconia blanks. Bar shaped specimens were made from several layers of multilayer zirconia blanks (Cercon ht ML, Dentsply Sirona, US; Katana Zirconia YML, Kuraray, J;SHOFU Disk ZR Lucent Supra, Shofu, J; priti multidisc ZrO2 Multi Translucent, Pritidenta, D; IPS e.max ZirCAD Prime, Ivoclar Vivadent, FL). Flexural strength was determined in a three-point bending test on extra-thin bars. X-ray diffraction (XRD) with Rietveld refinement was used to assess crystal structure and scanning electron microscopy (SEM) imaging to visualize the microstructure of each material and layer. Mean flexural strength varied between 467.5±97.5MPa (top layer, IPS e.max ZirCAD Prime) and 898.0±188.5MPa (bottom layer, Cercon ht ML) with significant (p≤0.055) differences between the individual layers. XRD indicated 5Y-TZP for enamel-layers, 3Y-TZP for dentine-layers, individual mixtures of 3Y-TZP, 4Y-TZP, or 5 Y-TZP for intermediate layers. SEM analysis showed grain sizes between approx. 0.15 and 4µm. Grain size tended to decrease from top to bottom layers. The investigated blanks differ predominantly in the intermediate layers. In addition to dimensioning of restorations, the milling position in the blanks must also be taken into account when using multilayer zirconia as restorative material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.