Abstract

Abstract The aim of this paper was to develop a one-step in situ method to synthesize the TiN reinforced Al metallic matrix composite coatings on Ti6Al4V alloy. In this method, the Al powder and nitrogen gas were simultaneously fed into feeding nozzle during a laser nitriding process. The microstructure, microhardness and sliding wear resistance of TiN/Al coatings synthesized at different laser powers in laser nitriding were investigated. Results showed that the crack- and pore-free coatings can be made through the proposed method. However, the morphologies and distribution of TiN dendrites and wear resistance of coatings were strongly dependent on laser power used in nitriding. With increasing the laser power, the amount and density of massive TiN dendritic structure in the coating decreased and the elongated and narrow dendrites increased, leading to the increment of wear resistance of coating. When the laser power is high, the convectional flow pattern of the melt pool can be seen near the bottom of pool.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call