Abstract

Thermally sprayed cermet coatings are widely used in many engineering applications to protect against wear and corrosion. In this study, three kinds of (Ti,Cr)C-based powders with 18, 25, 33 wt.% content of Ni binder were deposited onto stainless steel substrates by plasma spraying technique. The microstructure and dry sliding wear resistance of the (Ti,Cr)C-Ni coatings were investigated. The (Ti,Cr)C-Ni coatings have a heterogeneous structure composed of (Ti,Cr)C particles and Ni binder. Fracture and partial dissolution of the (Ti,Cr)C particles were found to occur during the plasma spray process. Among all the tested coatings, (Ti,Cr)C-33wt.%Ni coating exhibits lower wear rates and friction coefficients under all conditions. Worn surfaces of the coatings were analyzed using SEM to investigate the wear mechanism. With the increase in Ni content from 18 up to 33wt.%Ni wear mechanism of the (Ti,Cr)C-Ni coatings changes from abrasive to tribo-oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.