Abstract

Bronze aluminum composite coatings containing different amounts of alumina were fabricated by plasma spray process and their tribological properties were investigated using ball-on-disk (BOD) and rubber wheel (RW) tests at room temperature. Main wear mechanisms in pure bronze coatings during the ball-on-disk friction test were abrasion and intersplat delamination. The addition of alumina in bronze coatings clearly enhances their wear resistance. To explain this behavior, this article proposes an additional wear mechanism in the composite coatings that involves the rupture of the alumina lamellae located just below the wear track leading to a uniform distribution of fine alumina particles enveloped by the bronze matrix, which increase the surface hardness and hinder the wear. The deposition of debris on the wear track of composite coatings provokes an enhancement of the wear resistance as well. Bronze coatings show a low and stable friction coefficient of around μ = 0.3. Nevertheless, coatings with reinforcing particles of alumina show an abrupt transition in the friction coefficient from values around μ = 0.4–0.8, related to the modification of the surface contacts on the wear track due to the formation of a compacted debris layer deposited during the tribological test.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call