Abstract
The microstructure and thermal conductivity of four groups of Mg–rare earth (RE) binary alloys (Mg–Ce, Mg–Nd, Mg–Y and Mg–Gd) in as-cast and as-solutionized states were systematically studied. Thermal conductivity was measured on a Netzsch LFA457 using laser flash method at room temperature. Results indicated that for as-cast alloys, the volume fraction of second phases increased with the increase of alloying elements. After solutionizing treatment, a part or most of second phases were dissolved in α-Mg matrix, except for Mg–Ce alloys. The thermal conductivity of as-cast and as-solutionized Mg–RE alloys decreased with the increase of concentrations. The thermal conductivity of as-solutionized Mg–Nd, Mg–Y and Mg–Gd alloys was lower than that of as-cast alloys. Thermal conductivity of as-solutionized Mg–Ce alloys was higher than that of as-cast alloys, because of the elimination of lattice defects and fine dispersed particles during solutionizing treatment. Different RE elements have different influences on the thermal conductivity of Mg alloys in the following order: Ce
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have