Abstract
In the present work, aluminum‐3% brass composite sheets are produced by accumulative roll bonding (ARB) process up to nine passes at ambient temperature. Evolution of rolling texture is studied by texture measurement using X‐ray diffraction method. The results show that ARB process leads to the formation of copper ({112} <111>) and Dillamore ({4 4 11} <11 11 8>) as the major texture components. The intensity of copper and Dillamore components enhances to values as high as 19 times that of random with increasing number of passes to 9. It is observed that the 5th pass is a transition in development of the texture components, after which the intensities undergo a drop. The textures are comparable to ARB process of high purity aluminum, indicating that the addition of 3% brass particles do not cause any significant change in the deformation behavior. Electron backscatter diffraction (EBSD) technique is used to examine the microstructure; the results reveal formation of ultrafine grains (UFG), starting in the 3rd pass and covers the entire structure after the 5th pass. The major mechanisms involved are identified as rotation of the sub‐grains, as well as grain boundary migration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.