Abstract
Ni–Ni3Si composites are prepared by the Bridgman directional solidification technology under different growth conditions, aiming to improve the ductility of the Ni3Si compound and investigate the relationship between solidification microstructure and the properties. Microstructure of the Ni–Ni3Si hypoeutectic in situ composites transforms from regular lamellar eutectic to cellular structure then to dendritic crystal with the increase of the solidification rate. Ni–Ni3Si eutectic composites display regular lamellar eutectic structure at the solidification rate R=6.0–40.0 μm/s and the lamellar spacing is decreased with the increase of the solidification rate. Moreover, the Ni–Ni3Si hypoeutectic composites present lower micro-hardness than pure Ni3Si, which indicate Ni–Ni3Si hypoeutectic composites have higher ductility, whereas the ductility of the Ni–Ni3Si eutectic composites has scarcely been improved. This is caused by the formation of the metastable Ni31Si12 phase in the Ni–Ni3Si eutectic composites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.