Abstract

In order to improve the interfacial bonding between graphene and copper and improve the dispersibility of graphene in the copper matrix, a novel method was used to prepare graphene. Firstly, graphene oxide (GO) was prepared by the modified Hummer's method, and then the reduced graphene oxide-supported cobalt nanoparticle composite powder (Co@RGO) was prepared by one-step in-situ reduction method. The fabricated materials were mixed with copper powder to obtain various volume fractions. The powder mixture was subjected to compression and discharge plasma sintering (SPS) to prepare a bulk copper-based composite material. The microstructure and its comprehensive properties were studied by SEM, TEM, XRD, FTIR and Raman. The results show that the agglomeration of graphene can be effectively inhibited after the cobalt nanoparticles supported on the graphene surface. The proper amount of Co@RGO could be uniformly dispersed in the copper matrix. The composite material showed a high electrical conductivity (>86% IACS), and the Vickers hardness also increased by about 30% compared with pure copper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call