Abstract

A CoCrFeNiMn high-entropy alloy (HEA) was processed by equal-channel angular pressing (ECAP) for up to four passes at 673K and the results show that the strength increases gradually with increasing straining up to ~ 1GPa with an elongation to failure of ~ 35% after four passes of ECAP. In this condition, the microstructure is a single-phase ultrafine-grained (UFG) CoCrFeNiMn HEA with an average grain size of ~ 100nm and a high dislocation density. This UFG HEA was subjected to post-deformation annealing (PDA) at temperatures of 673–1073K for 60min and it is shown that the hardness increases slightly due to precipitation to 773K and then decreases to 1073K due to a combination of recrystallization, grain growth and a dissolution of precipitates. The formation of brittle σ-phase precipitates improves the strength significantly but with a minor decrease in ductility. Annealing at the peak temperature of 773K produces a very high yield strength of ~ 1015MPa and an ultimate strength of ~ 1080MPa together with an excellent elongation to failure of ~ 30%. An analysis of the data shows that grain boundary strengthening is the most important strengthening mechanism in these ECAP samples both before and after PDA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.