Abstract

In the present study, Mg-4Zn-1Si alloy was subjected to equal channel angular pressing (ECAP) up to 4 passes at 300 °C, followed by ball burnishing using 0.3 mm depth of press, 300 mm/min feed and 1 pass successfully. The effect of ECAP and ECAP + ball burnishing process on microstructure, mechanical properties (tensile and hardness) and corrosion behavior was systematically investigated. After 4 pass ECAP, initial coarse grains (210 μm) were refined and average grain size is 6 μm and after ball burnishing, the grain size is found to be 3.3 μm. Microstructure evolution is discussed using optical images, scanning electron microscope images and transmission electron microscope images. For ECAP samples, maximum strength and hardness was recorded at 3 pass. Both strength and hardness decreased for 4 pass ECAP processed samples, even though grain size decreased, this is because of texture modification in the material. ECAP 4 pass + ball burnished samples exhibited 48.5% enhancement of microhardness as compared to 4 pass ECAP samples. Corrosion resistance of the samples decreased with increase in the number of ECAP passes, this is due to strain-induced grain refinement with more crystalline defects in samples. Combined process of ECAP and ball burnishing effectively reduces the Icorr and this consequently reduces corrosion rate of the Mg–4Zn-1Si alloy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.