Abstract
The microstructure and microtexture evolution of a Fe-36%Ni alloy processed by cross accumulative roll-bonding was investigated using Electron BackScatter Diffraction. Deformation led to the development of elongated ultrafine grains parallel to the rolling direction that subsequently became more equiaxed. The grains were more effectivelly refined after CARB than after ARB processing. The grain aspect ratio (l/L) decreased (which means a trend towards elongated sub-grain structure) after 2 and 3 CARB processing cycles and then increased (which means a trend towards equiaxed subgrain structure) from 4 to 5 cycles. The fraction of HAGB, CSL boundaries and the estimated deformed volume fraction gradually increased with increasing number of CARB cycles. Copper-type texture was observed after CARB odd cycles (RD//RD), while after even cycles (RD//TD) a new texture component named H ({012}<221>) was observed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have