Abstract

Friction stir processing (FSP) has been developed by several researchers to produce an upper surface modification of metallic materials. The fabrication of TiC particulate (~2 \(\upmu \)m) reinforced aluminum matrix composite (AMC) using FSP is studied in this paper. The measured content of TiC powders were compacted into a groove of 0.5 mm × 5.5 mm. A single pass FSP was carried out using a tool rotational speed of 1600 rpm, processing speed of 60 mm/min and axial force of 10 kN. A tool made of HCHCr steel, oil hardened to 62 HRC, having a cylindrical profile was used in this study. The microstructure and microhardness of the fabricated AMC were analysed. Scanning Electron Microscope (SEM) micrographs revealed a uniform distribution of TiC particles which were well-bonded to the matrix alloy. The hardness of the AMC increased by 45% higher than that of the matrix alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.