Abstract

Mg-2.5wt%Y-4wt%Nd-0.5wt%Zr casting alloy was subjected to submerged friction stir processing (SFSP) with different rotation rates (ω) and travel speeds (υ). The influence of the ratio of ω/υ on the microstructure and mechanical properties of Mg-Y-Nd alloy was investigated in the present work by optical microscopy, scanning electron microscopy, transmission electron microscopy, tensile test and hardness measurement. The results showed that the average grain sizes of SFSP samples were significantly refined compared with as-cast sample, and the coarse net-shaped Mg12Nd phases which located at grain boundaries in as-cast sample were changed into small particles. The combined effect of grain refinement and uniform particles distribution was responsible for the enhancement of mechanical properties. The relative optimal parameter of 600 rpm/60 mm·min-1in this research obtained the finest grain size and the best mechanical properties, which were 1.1 μm for average grain size, 305 MPa for ultimate tensile strength and 22% for elongation, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call