Abstract
The microstructure and mechanical properties of laser beam welded dissimilar joints in TC4 and TA15 titanium alloys were investigated. The results showed that the coarse columnar grains containing a large amount of acicular α and martensite α′ were present in the fusion zone (FZ), some residual α phases and martensite structure were formed in the heat-affected zone (HAZ) on TC4 side, and bulk equiaxed α phase of the HAZ was on TA15 side. An asymmetrical microhardness profile across the dissimilar joint was observed with the highest microhardness in the FZ and the lowest microhardness in TA15 BM. The orders of yield strength and ultimate tensile strength were as follows: TC4 BM > TC4/TC4 similar joint > TA15 BM > TA15/TA15 similar joint > TC4/TA15 dissimilar joint, and increased while hardening capacity and strain hardening exponent decreased with increasing strain rate from 1×10−4 s−1 to 1×10−2 s−1. The TC4/TA15 dissimilar joints failed in the TA15 BM, and had characteristics of ductile fracture at different strain rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of Nonferrous Metals Society of China
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.