Abstract

The aim of this study was to evaluate the influence of strain rate and temperature on the tensile properties, strain hardening behavior, strain rate sensitivity, and fracture characteristics of electron beam welded (EBWed) dissimilar joints between Ti–6Al–4V and Ti17 (Ti–5Al–4Mo–4Cr–2Sn–2Zr) titanium alloys. The welding led to significant microstructural changes across the joint, with hexagonal close-packed martensite (α′) and orthorhombic martensite (α″) in the fusion zone (FZ), α′ in the heat-affected zone (HAZ) on the Ti–6Al–4V side, and coarse β in the HAZ on the Ti17 side. A distinctive asymmetrical hardness profile across the dissimilar joint was observed with the highest hardness in the FZ and a lower hardness on the Ti–6Al–4V side than on the Ti17 side, where a soft zone was present. Despite a slight reduction in ductility, the yield strength (YS) and ultimate tensile strength (UTS) of the joints lay in-between the two base metals (BMs) of Ti–6Al–4V and Ti17, with the Ti17 alloy having a higher strength. While the YS, UTS, and Voce stress of the joints increased, both hardening capacity and strain hardening exponent decreased with increasing strain rate or decreasing temperature. Stage III hardening occurred in the joints after yielding. The hardening rate was strongly dependent on the strain rate and temperature. As the strain rate increased or temperature decreased, the strain hardening rate increased at a given true stress. The strain rate sensitivity evaluated via both common approach and Lindholm approach was observed to decrease with increasing true strain. The welded joints basically failed in the Ti–6Al–4V BM near the HAZ, and the fracture surfaces exhibited dimple fracture characteristics at different temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.