Abstract
In this study, microstructural evolution and mechanical properties of commercial purity titanium after a combined equal channel angular pressing (ECAP) and warm caliber rolling (WCR) was investigated. The ECAP process was applied to enhance the hardness and strength of the specimen by decreasing the grain size and producing UFG microstructure. WCR was applied to reduce cross-section and increase the ductility of the ECAPed specimens. Results show that WCR reduces the work-hardening rate by increasing grain size and also increases elongation and workability while it reduces the yield and ultimate tensile strength. It has been shown that the strength ratio ( $${{\sigma_{UTS} } \mathord{\left/ {\vphantom {{\sigma_{UTS} } {\sigma_{y} }}} \right. \kern-0pt} {\sigma_{y} }}$$ ) and strain ratio ( $${{\varepsilon_{UTS} } \mathord{\left/ {\vphantom {{\varepsilon_{UTS} } {\varepsilon_{t} }}} \right. \kern-0pt} {\varepsilon_{t} }}$$ ) of the processed samples are comparatively larger than all previously post processed ECAPed materials at lower temperatures.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have