Abstract

The microstructure and magnetic properties of iron arsenide (FeAs) with coarse-grain and nanocrystalline structure were investigated. Coarse-grain FeAs was synthesized through high-energy ball milling and heat treatment. Nanocrystalline FeAs was obtained by ball milling of coarse-grain FeAs. The results suggest that the reduced grain size of FeAs (from >100 to 32.4 nm) is accompanied by the introduction of internal strains up to 0.568% with ball milling time from 0 to 32 h. The magnetic properties of FeAs show that the coercivity is reduced from 29.2 to 15.6 kA/m and the magnetization is increased over time of milling. The low coercivity is mainly due to the small grain size stemmed from ball milling, while the increase of magnetization is primarily caused by the change of lattice parameters of FeAs and the emergence of superparamagnetic phase at the same time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.