Abstract

AbstractThis paper reviews the study of the morphology and physical properties of fat crystal networks. Various microscopical and rheological methods can be used to quantify the microstructure of fats, with the ultimate aim of relating structure to mechanical response. Even though a variety of physical models have been proposed to explain the relationship between the mechanical properties of fats and their microstructure, the fractal scaling model most closely describes the experimentally observed behavior. Mass fractal dimensions determined by microscopy and rheology can be used successfully to quantify the microstructure of fats since fractal dimension values are sensitive to the combined effects of crystal size, morphology, and the spatial distribution of mass within the fat crystal network. Methods used to determine the fractal dimension of a fat crystal network such as box counting, particle counting. Fourier transform, light scattering and oil migration are explained in detail here. The relationship between fractal dimensions determined by microscopy and rheology are discussed in light of the fact that different measures of the fractal dimension describe different microstructural features in a fat crystal network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.