Abstract

In the present paper, we demonstrate how modifications of the microstructure and the chemical composition can influence the electrochemical behavior of cathodes for molten carbonate fuel cells (MCFCs). Based on our experience, we designed new MCFC cathode microstructures combining layers made of porous silver, nickel oxide or nickel foam to overcome common issues with the internal resistance of the cell. The microstructures of the standard NiO cathode and manufactured cathodes were extensively investigated using scanning electron microscopy (SEM) and porosity measurements. The electrochemical behavior and overall cell performance were examined by means of electrochemical impedance spectroscopy and single-cell tests in operation conditions. The results show that a porous silver layer tape cast onto standard NiO cathode and nickel foam used as a support layer for tape cast NiO porous layer substantially decrease resistance components representing charge transfer and mass transport phenomena, respectively. Therefore, it is beneficial to combine them into a three-layer cathode since it facilitates separation of predominant physio-chemical processes of gas and ions transport in respective layers ensuring high efficiency. The superiority of the three-layer cathode has been proven by low impedance and high power density as compared to standard NiO cathode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call