Abstract

This study reports a detailed investigation of the deformation behavior and microstructural evolution of a novel ultra-low carbon Cr-Mo alloyed dual-phase steel rebar aimed for marine applications. The rebar matrix consists of the lamellar ferrite/bainite dual phases with the lamellar interfaces along the rolling direction. The soft ferrite phase is composed of larger grains with a low dislocation density, while the hard bainite phase is composed of finer grains with a much higher dislocation density. By comparing the strain hardening behavior from different sites at the rebar with varying ferrite and bainite volume fractions, it shows that the hetero-deformation induced (HDI) hardening is strong and dominates the overall work hardening behavior in the early stage of plastic deformation by prevailing over the conventional sum-up of contribution of each phase alone. In this stage, the plastic deformation of ferrite was constrained by the disproportionally-strained, neighboring bainite, creating the accumulation of geometrically necessary dislocations (GNDs) at the phase interface and the long-range HDI stress. The results also reinforce the understanding of deformation behavior of dual-phase steels, especially around the role of HDI stress and hardening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.