Abstract

The present work emphasizes the influence of Er2O3 addition on the microstructure and nonlinear current-voltage characteristics of ZnO based varistors prepared by mixing in a high energy ball mill followed by compaction and sintering at a temperature of 1100 °C for duration ranging from 0.5 to 8 h. Increasing sintering time is found to enhance the size of ZnO grains of the sintered pellets and thereby, degrades the electrical properties. However, Er2O3 addition retards the grain growth of ZnO due to the generation of secondary spinel phases (ErVO4 and Er-rich) at grain boundaries and triple points that restrict the grain boundary migration. Er2O3 modified ZnO varistor sintered at 1100 °C for 0.5 h exhibits considerably improved electrical property with nonlinear exponent and breakdown field of 27 and 3880 V cm-1, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.