Abstract
To investigate the effects of blood and platelet-rich fibrin (PRF), commonly used scaffolds in regenerative endodontic treatment (RET), on the hydration, microstructure, and color stability of three hydraulic calcium silicate cements (HCSCs), OrthoMTA, RetroMTA, and TotalFill-BC-RRM. The HCSCs were prepared and placed into polyethylene molds and transferred to Eppendorf tubes containing PRF, blood, or PBS and then incubated for 1week or 1month. The microstructure and hydration of the cements were studied by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The chromatic alteration of materials was also measured using a spectrophotometer. The data for color stability were analyzed using 2-way analysis of variance and Tukey post hoc tests. There was no significant difference between the color stability of cements exposed to PBS (p > 0.05). The chromatic alteration of cements exposed to blood was significantly greater than those exposed to PRF and PBS (p < 0.001). In the presence of blood and PRF, the color change of OrthoMTA was significantly greater than that of RetroMTA and TotalFill (p < 0.05), with no significant difference between RetroMTA and TotalFill (p > 0.05). XRD analysis of all cements revealed a calcium hydroxide peak after 1-week and 1-month exposure to the media; however, OrthoMTA and TotalFill exposed to blood and PRF for 1month showed weaker calcium hydroxide peaks. SEM images revealed cements exposed to PBS had a different surface microstructure compared to those exposed to blood and PRF. Furthermore, the surface microstructure of HCSCs was influenced by the type of cement radiopacifier (bismuth oxide or zirconium oxide). EDS analysis of the elemental composition in all groups displayed peaks of Ca, O, C, Si, P, and Al. Color stability, hydration behavior, and microstructure of HCSCs were affected by exposure to PRF and blood and the type of cement radiopacifier. As some important physicochemical properties of HCSCs could be influenced by the environmental conditions and the type of radiopacifier, alternatives to blood clot and HCSCs containing substitutes for bismuth oxide might be more suitable in RETs.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have