Abstract

AbstractManganese‐antimony composite oxide catalysts were prepared for use in low‐temperature selective catalytic reduction of flue gas, by adopting the strategy of passivation to regulate the valence state of the active component and control catalytic activity. Activity evaluation results found that MnSb0.36Oy delivered 80 % NO conversion in the presence of SO2 at 200 °C, and nearly 90 % conversion at 250 °C. Doping with Sb changed the surface micromorphology, resulting in a perforated porousness layered foam with a porous structure of tens of nanometers, which was conducive to molecular mass transfer of the reaction gas. Doping with Sb regulated the valence state of the active MnOx component, which diminished catalytic oxidation of SO2, thus promoting catalyst stability and limiting the toxic effect of SO2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call