Abstract
Cobalt-based alloys are used as wear-resistant materials for hardfacing cheap steel substrates. A substantial enhancement in mechanical properties of cobalt-based superalloys is attributed to the martensitic fcc {yields} hcp phase transformation. Alloying elements can be classified as phase modifiers (Ni and Fe stabilize fcc whereas W and Cr stabilize hcp), solid-solution strengtheners (W and Mo), which affect only the matrix, and elements that form carbides (Cr-rich M{sub 7}C{sub 3} and M{sub 23}C{sub 6}, M = metal). Of the different depositing techniques such as plasma spray, tungsten inert gas, oxyacetylene flame and laser cladding, the latter delivers coatings with a low dilution with the substrate material and no pores. Moreover, the laser cladding process has the advantage of being well controllable. This paper reports on the deposition of five different cobalt-based Stellite alloys on steel substrates by laser cladding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.