Abstract
Iron–Chromium–Aluminium (Fe–Cr–Al) alloys have been widely investigated as candidate materials for various nuclear applications. Albeit the excellent corrosion resistance, conventional Fe–Cr–Al alloys suffer from α–α′ phase separation and embrittlement when subjected to temperatures up to 500°C, due to their high Cr-content. Low-Cr Fe–Cr–Al alloys are anticipated to be embrittlement resistant and provide adequate oxidation properties, yet long-term aging experiments and simulations are lacking in literature. In this study, Fe–10Cr–(4–8)Al alloys and a Fe–21Cr–5Al were thermally aged in the temperature interval of 450–550°C for times up to 10,000h, and the microstructures were evaluated mainly using atom probe tomography. In addition, a Kinetic Monte Carlo (KMC) model of the Fe–Cr–Al system was developed. No phase separation was observed in the Fe–10Cr–(4–8)Al alloys, and the developed KMC model yielded results in good agreement with the experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.