Abstract
Nano-sized SiC particles-reinforced Sn–3.0Ag–0.5Cu (SAC305) composite solder was prepared by mechanically dispersing SiC particles into plain SAC305 alloy at 900°C for 90min. The effects of SiC addition on microstructure, melting behavior and tensile properties of as-cast SAC305 solders were systematically investigated. The data from microstructure-properties analysis of composite solder show that the nano-sized SiC particles has significantly refined the microstructure, increased the strength and elastic modulus in comparison with the plain SAC305 solder. In addition, SiC particles decrease the pasty range of composite SAC305-0.7SiC solder although the undercooling and eutectic temperature prolonged nearly at the SAC305 level. A strain rate-dependent model of elastic modulus (E), yield stress (0.2%YS) and ultimate tensile strength (UTS) was developed based on the test results. The predicted tensile parameters for both solders are reasonably close to the present experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.