Abstract

In dissimilar friction stir welding (FSW), the presence of a third interlayer material can have a positive influence on local ternary chemical reactions due to complex mechanical mixing in the weld nugget. This leads to a reduction and distribution of intermetallic compounds as fine particles in the weld nugget. These fine particles can provide high-temperature grain stability. In the present investigation, a zinc (Zn) interlayer was used during the FSW of aluminum (Al) with titanium (Ti). X-ray computed tomography results revealed the occurrence of mechanical mixing of Zn with both Al and Ti. To understand the nature of the weld nugget at high temperatures, heat treatment of the weld was carried out at 500°C for 60 min. The detailed mechanisms leading to the superior grain stability of Al in the weld nugget were investigated. The improvement in grain stability of Al may open up a new area of research and development to produce new materials with high-temperature grain stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.