Abstract
A dislocation-density based multiple-slip crystalline plasticity formulation, a dislocation-density grain boundary (GB) interaction scheme, and an overlapping fracture method were used to investigate crack nucleation and propagation in martensitic steel with retained austenite for both quasi-static and dynamic loading conditions. The formulation accounts for variant morphologies, orientation relationships, and retained austenite that are uniquely inherent to lath martensitic microstructures. The interrelated effects of dislocation-density evolution ahead of crack front and the variant distribution of martensitic blocks on crack nucleation and propagation are investigated. It is shown that dislocation-density generation ahead of crack front can induce dislocation-density accumulations and plastic deformation that can blunt crack propagation. These predictions indicate that variant distribution of martensitic blocks can be optimized to mitigate and potentially inhibit material failure.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have