Abstract

A microstructural model of intergranular fracture in textured materials is presented. In this model, the material is represented by a two-dimensional microstructure with non-regular polygonal grains which represents material's texture and grain shape measured in experiments or calculated from Monte Carlo simulations. The grain boundary character, grain boundary energy, and fracture stress are assigned to each grain boundary according the grain boundary character distribution. Intergranular fracture susceptibility is analyzed by defining the probability of finding a continuous path along the grain boundaries which are intrinsically susceptible to fracture. In this analysis the orientations of the grain boundary with respect to the applied or residual tensile stress axis is considered. The probability of intergranular fracture for each grain boundary depends on the intergranular fracture resistance, the interface orientation relative to the stress axis, and a value of the tensile stress acting on the grain boundary. The crack arrest distance and the fracture toughness are calculated in terms of the frequency of low-energy grain boundaries, fracture stress of low-energy grain boundary, angle distribution of grain boundary interfaces, and anisotropy of grain shape. The results indicate that the fracture toughness increases and the crack arrest distance decreases dramatically with increasing the frequency of the low-energy grain boundaries. Lowering the grain boundary energy can improve the fracture toughness and decrease the crack arrest distance. The angle distribution of grain boundary interfaces and the grain shape factor are also very effective in controlling the fracture toughness. High fracture toughness of polycrystalline materials is related to the presence of a high frequency of low-energy boundaries which are resistant to fracture. The best fracture toughness for brittle materials can be achieved by controlling the frequencies of the low-energy grain boundaries, the grain boundary character, and the boundary inclination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.