Abstract

A gradient nano-grained (GNG) surface layer is produced on a bulk coarse-grained Cu by means of a surface mechanical grinding treatment. Homogeneous grain coarsening induced by mechanical deformation is observed in the GNG Cu layer under tensile tests at both 300 K and 123 K. The concurrent grain coarsening during tensile deformation is proven to be also thermally activated, because the extent of grain coarsening of the GNG Cu layer is less significant at 123 K than at 300 K, although a higher flow stress is achieved at 123 K. During the subsequent storage at 258 K after tensile tests, no obvious change can be found for the grain size in the GNG Cu layer deformed at 300 K. In contrast, widespread abnormal grain coarsening is frequently observed in the GNG Cu layer deformed at 123 K and stored for 100 days, which may be caused by the higher stored energy in the non-equilibrium grain boundary structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.