Abstract
In this work, we demonstrate a hybrid cold sintering/spark plasma sintering (CSP-SPS) process to densify ZnO ceramic with controlled grain growth. The densification of ZnO is initially activated at 85 °C, and high densities (>98%) are achieved at 200–300 °C in only 5 min with a low assisted pressure of 3.8–50 MPa. The microstructure of ZnO grains experiences a mild coarsening from ~205–680 nm during the CSP-SPS. In comparison, a much higher temperature (>770 °C) is required to sinter ZnO ceramic via SPS, and the grain size exhibits an obvious overgrowth to ~10 µm. The calculated apparent activation energy of grain growth using CSP-SPS is 69.3 ± 6 kJ/mol, which is much lower than that of SPS samples with 296.8 ± 59 kJ/mol. In addition, the conduction mechanism of the CSP-SPS and SPS samples is investigated using impedance spectroscopy. Overall, CSP-SPS is promising for the fabrication of fine ceramics with mild sintering conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.