Abstract

In this study, ZL104 aluminum alloy supplied in cold rolled state was introduced in recrystallization and partial melting (RAP) process to fabricate semi-solid billets. During the RAP process, samples cut from cold rolled ZL104 aluminum plate were heated to different semi-solid temperatures, and the effects of isothermal treatment parameters on the microstructures of semi-solid billets were investigated. Results showed that, with the increase of isothermal holding temperature and time, both the average grain size and the shape factor were increased. Namely, the shape of solid grain was more and more spherical, but the size of solid grain was larger and larger, which may be not suitable for semi-solid forming. The size of liquid droplets was increased while the number of liquid droplets was decreased with increasing the isothermal holding temperature and time. Microstructural coarsening of solid grain were attributed to coalescence and Ostwald ripening mechanisms, however, the latter one played a more and more important role with the increase of isothermal holding time and temperature. Additionally, The optimal isothermal holding temperature and time are 570 °C and 5 min, respectively, and the coarsening rate constant is 1357.2 μm3/s at 570 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.