Abstract

Understanding the mechanisms behind microstructural evolution during shear deformation has been a long-standing area of interest. However, establishing a connection between microstructure, mechanical properties, and the extent of shear deformation is challenging and requires refined experimental approaches. Shear-punch testing (SPT) provides a controlled method to introduce shear into small volumes of material that later can be subjected to detailed microstructural characterization. In this study, we utilize an SPT device to induce shear deformation to pure copper (Cu) and a binary copper-chromium (Cu-Cr) alloy. Electron backscatter diffraction and transmission electron microscopy were used to study the mechanisms of plastic deformation after SPT. Our results indicate that shear deformation of pure Cu produces a dense network of intercepting microshear bands upon sustained deformation. Twin boundaries in annealed Cu undergo transformation into high-angle grain boundaries due to simultaneous deviation from the axis-angle pair condition of 60° misorientation on [111] direction. The presence of 50 vol% Cr particles in the soft Cu matrix altered the shear deformation mechanism. Preferential deformation of the Cu matrix in Cu-Cr alloy led to accelerated shear-induced formation of low and high-angle grain boundaries and subsequent grain refinement. Comparatively, insignificant grain refinement occurred in pure Cu samples even at a strain ∼10 times larger (ε = 4.73) than that of the Cu-Cr case (ε = 0.42). This study sheds light on the microstructural evolution of Cu during shear deformation and highlights the significant influence of a hard second phase in modifying the microstructural response mechanisms of a softer matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call