Abstract
This study investigated how process parameters of laser cladding affect the microstructure and mechanical properties of WC-12Co composite coating for use as a protective layer of continuous caster rolls. WC-Co powders, WC-Ni powders, and Ni-Cr alloy powder with various wear resistance characteristics were evaluated in order to determine their applicability for use as cladding materials for continuous caster roll coating. The cladding process was conducted with various parameters, including laser powers, cladding speeds, and powder feeding rates, then the phases, microstructure, and micro-hardness of the cladding layer were analyzed in each specimen. Results indicate that, to increase the hardness of the cladding layer in WC-Co composite coating, the dilution of the cladding layer by dissolution of Fe from the substrate should be minimized, and the formation of the Fe-Co alloy phase should be prevented. The mechanical properties and wear resistance of each powder with the same process parameters were compared and analyzed. The microstructure and mechanical properties of the laser cladding layer depend not only on the process parameters, but also on the powder characteristics, such as WC particle size and the type of binder material. Additionally, depending on the degree of thermal decomposition of WC particles and evolution of W distribution within the cladding layer, the hardness of each powder can differ significantly, and the wear mechanism can change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.