Abstract

In the present study a hypomonotectic Al-0.9wt%Pb alloy was directionally solidified under transient heat flow conditions and the microstructure evolution was analyzed. The solidification thermal parameters such as the growth rate, the cooling rate and the temperature gradient were experimentally determined by cooling curves recorded by thermocouples positioned along the casting length. The monotectic structure was characterized by metallography and a microstructural transition was observed. From the casting cooled surface up to a certain position in the casting the microstructure was characterized by well-distributed Pb-rich droplets in the aluminum-rich matrix, followed by a mixture of fibers and strings of pearls from this point to the top of the casting. The interphase spacing (λ) and the diameter of Pb-rich particles were also measured along the casting length and experimental growth laws relating these microstructural features to the experimental thermal parameters are proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call