Abstract

Advanced analytical transmission electron microscopy has been used to investigate microstructural evolution during pyrolysis in triol-based sol-gel thin films. At pyrolysis temperatures up to 300 °C, the films remained amorphous; however, nanometer-sized precipitates were observed in films heat-treated up to 400 °C for 10 min. Analytical transmission electron microscopy indicated that the precipitates were Pb-rich, as well as deficient in O, Ti, and Zr. Films pyrolyzed up to 500 °C for 10 min were composed of a nanocrystalline pyrochlore phase; however, pores could be observed, situated in the same position as the nanometer-sized precipitates at 400 °C. Face-centered cubic Pb-rich crystallites were also present on the surface of pyrolyzed films but absent in the fully crystallized films annealed at 650 °C. A tentative mechanism is proposed to explain these observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.