Abstract
A systematic investigation of the microstructural evolution of fast fired, sol-gel derived Pb(Zr, Ti)O3 films (Zr/Ti = 54/46) was performed by analytical transmission electron microscopy (TEM). It was found that the nucleation and growth of the sol-gel PZT films were influenced by the precursor chemistry. The precursor solution was composed of Pb 2-ethylhexanoate, Ti isopropoxide, and Zr n-propoxide in n-propanol. Porous and spherulitic perovskite grains nucleated and grew from a pyrochlore matrix for NH4OH-modified films, but no chemical segregation was found. These thin films consisted completely of porous spherulitic PZT grains (∼2 μm) when the firing temperature was increased. Chemical phase separation with regions of Zr-rich pyrochlore particles separated by Zr-deficient perovskite grains was observed in the initial stages of nucleation and growth for CH3COOH-modified PZT films. This phase separation is attributed to the effect of acetate ligands on the modification of molecular structure of the PZT precursor. Firing the acid-modified films at higher temperatures for long times resulted in porous perovskite grain structures. The residual porosity in these films is suggested to be a result of differential evaporation/condensation rates during the deposition process and the gas evolution at high temperatures due to trapped organics in the films. Dielectric and ferroelectric properties were correlated to the microstructure of the films. Lower dielectric constants (∼500) and higher coercive fields (∼65 kV/cm) were found for the acid-modified PZT films with phase separation in comparison to those measured from the sol-gel films with a uniform microstructure (∽ > 600, Ec < 50 kV/cm). All films fired at 650 °C showed relatively good remanent polarization on the order of 20 μC/cm2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.